
June 18, 2025

Switches and VNA Software for Automation

Charlie G Tolley1, 2

1Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA
2Radio Astronomy Laboratory, University of California Berkeley, Berkeley, CA 94720, USA

1. INTRODUCTION

While the EIGSEP antenna is suspended in the canyon, it is necessary to regularly measure the S11

reflection coefficient of the antenna, the receiver, and the noise source pathways. To this end, the software

for the Vector Network Analyzer must be automated on a cycle of measuring these pathways and taking

sky measurements. I present the software overview and some common commands for the Vector Network

Analyzer (VNA) (GitHub: https://github.com/EIGSEP/CMT-VNA.git) and switch network (GitHub:

https://github.com/EIGSEP/switchNW.git) code.

2. SWITCHES

Figure 1. Teledyne
CCR-33S30-T SPDT
Failsafe Switch

We are using Teledyne CCR-33S30-T Single-Pull, Double-Throw (SPDT)

failsafe switches - SPDT refers to switches with one input and two outputs,

and failsafe means that to remain in the high power state, a constant ac-

tuation current of 200mA at 12V must be applied. To interact with these

switches, I’ve connected their logic pin with a Raspberry Pi Pico flashed

with MicroPython. Using command line command mpremote, I copy and run

a script that listens for commands from the LattePanda Mu Single-Board

Computer (SBC).

This script, ctrl_gpio.py must be hard-coded with the GPIO pin num-

bers that are connected to each switch (i.e. PINS = [0,1,2]) where

0, 1, and 2 are the GPIO pin numbers the switches are attached to.

Once you have changed the PINS list, you can copy over the new

file with mpremote cp ctrl_pico.py :ctrl_pico.py, and run it with

mpremote run ctrl_pico.py. Once your pico is listening, you should create

a dictionary of ”paths” that define each path in terms of the switch state (0

is low power state and 1 is high power state). The index of the state should correspond to the index of

the GPIO pin number in the PINS list you hard-coded to the Pico, and it should be a string of 0s and

1s. For example, a 3-switch network might be defined like so:

paths = {

’antenna’:’000’,

’load’: ’010’,

’open’: ’100’,

’short’:’101’

}

Where the first index corresponds to the switch connected to the GPIO pin at the first index of your

PINS list.

Corresponding author: Charlie G Tolley

tolley412@berkeley.edu

https://github.com/EIGSEP/CMT-VNA.git
https://github.com/EIGSEP/switchNW.git
mailto: tolley412@berkeley.edu


2

When initializing your SwitchNetwork, be sure to know what /dev/ttyACM* number your pico is

connected to. You can check this by running ls /dev/ttyACM*, which should only turn up one item

(unless you’re connected to multiple serial ports). The default is /dev/ttyACM0, but occasionally it will

switch itself. For an example of initializing a SwitchNetwork:

snw = SwitchNetwork(paths=paths, serport=’/dev/ttyACM0’)

Once this is initialized, snw has attributes state, which holds a tuple with the path’s key (i.e. ’antenna’)

and the power sum, which sums the number of switches in the high-power, or ON state. To switch to a

new path, one should run:

snw.switch(’load’) #replace with chosen path

Make sure that all switches are switched off after finishing with your application. The function

snw.powerdown() is a handy way of going to the lowest-power state on the switch network without

you having to remember what the path is that is in the lowest power state.

3. CMT-VNA

Figure 2. Copper Mountain Technology R60 1-port
VNA

Within the cmt_vna package, there are two

modules: a) vna, with a class VNA that con-

trols the VNA, and b) calkit, which contains

calibration code and a class CalStandard that

holds the open, short and 50Ω load models. I

will talk about the calkit module in a future

memo.

3.1. Instrument Code

We use the Copper Mountain Technology

R60 1-port VNA, which is a compact VNA

capable of reading the reflection coefficient of the port it is connected to - this is often called the S11

parameter (for a 1-port system), which it gets by sending a broadband signal and measuring what is

reflected back at it as a fraction of voltage in. We talk to the VNA with Standard Commands for

Programmable Instruments, referred to here as SCPI. SCPI is organized in a command tree, so the

commands each follow branches. For example: FORM:DATA REAL is composed of FORM for the FORMat

branch, then DATA specifies what the format is referring to, and REAL is the argument that tells the data

what format to be in. If you’re curious, feel free to reference the manual scp (2021), but you should not

need to write any SCPI code to work with the VNA.

Requirements: All requirements are up to date in the setup.cfg file. In brief, you need numpy,

matplotlib, pyserial, PyVISA, pyvisa-py, and switch_network (which I talk about in section 2).

The VNA class has two important arguments: ip and port. Both of these have defaults hard-coded

into the module, and so should not need to be specified. The setup function must be run to ensure you

are working within your specifications - you can specify the frequency range in Hz (fstart, fstop), the

number of points to sweep through (npoints), the intermediate frequency bandwidth (ifbw) and the

power in dBm (power_dBm), all of which have appropriate defaults. It returns a frequency array and

adds that array to the VNA object you instantiated. To set up your measurements, you might run:

from cmt_vna import VNA

vna = VNA(ip=’127.0.0.1’, port=5025)

freqs = vna.setup(fstart=1e6, fstop=250e6, npoints=100, ifbw=100, power_dBm=0)

Note that all values given in the last line above are the defaults and do not need to be specified. Running

vna.freqs should return the same array as is assigned to the freqs.

Once the instrument is set up, then you can sweep through the reflection coefficient measurements.

VNA has a built in function called measure_S11 which calls the SCPI command to sweep:



3

s11 = vna.measure_S11()

These functions are the most important ones to understand in order to operate the VNA, with a few

others for ease of use. For example:

� measure_OSL switches through the open, short and load standards which

� add_OSL calls and stores to save once done with the measurement in vna.data. Calling auto=True

will implement the automatic switching protocol.

� read_data calls measure_S11 and adds the gammas to vna.data.

� write_data writes all the data to a file and clears the data out of the VNA object.

3.2. Scripts

The two most useful scripts for operating the VNA are measure_s11.py and

get_cable_network_sparameters.py. The former is an example of how the VNA code will be imple-

mented in the field - for a given number of files, it measures the OSL standards, then takes a set number

of S11 measurements of the antenna itself, then sleeps for a given amount of time. Whether or not to

use the automatic switch network needs to be specified, as should the cadence, the number of S11 files to

take, the number of calibration cycles to go through, and whether or not to measure the OSL standards.

A generally useful script call for running one set of calibrated test measurements is:

python3 measure_s11.py --osl --npoints 1000 --fstart 50e6 --fstop 250e6 -c 0 -m 1

--outdir /home/charlie/eigsep/CMT-VNA/data/unit_tests/

Note that many of these values are defaults and do not need to be specified.

REFERENCES

2021, RVNA and RNVNA SCPI Programming

Manual, 21st edn., Copper Mountain

Technologies, Indianapolis, IN


	Introduction
	Switches
	CMT-VNA
	Instrument Code
	Scripts


